If the straight line drawn through the point P(√3,2) and inclined at an angle of π6 with the positive direction of x−axis meets the line √3x−4y+8=0 at point Q, then the length of PQ is
Open in App
Solution
Using parametric form of straight line Q≡(√3+√3r2,2+r2) Here, r=PQ
Q lies on √3x−4y+8=0 ⇒√3(√3+√3r2)−4(2+r2)+8=0 ⇒3+32r−8−2r+8=0 ⇒r2=3 ⇒r=6 ∴PQ=6