wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the straight line x cosα+ysinα=p touches the curve x2a2+y2b2=1, then prove that a2cos2α+b2sin2α=p2

Open in App
Solution

xcosα+ysinα=P touches x2a2+y2b2=1
then also at that point should be same
cosα+msinα=0 or m=cotα(1)
2xa2+2ymb2=0 or x=a2cotαyb2(2)
put (2) in (1)
y(a2cos2αb2sinα+sinα)=P
yb2sinα[a2cos2α+b2sin2α]=P
or y=Pb2sinαa2cos2α+b2sin2α x=Pa2cosα(1a2cos2α+b2sin2α)(3)
Put (3) back in (2)
x2a2+y2b2=1 P2a4cos2α(a2cos2α+b2sin2α)2a2+P4b2sin2αb2(a2cos2α+b2sin2α)2=1
P2(a2cos2α+b2sin2α)=(a2cos2α+b2sin2α)2
a2cos2α+b2sin2α=P2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon