If the straight line x cos α + y sin α = p touches the curve x2a2+y2b2=1, then prove that a2cos2α+b2sin2α=p2.
Given, line is xcosα+ysinα=p
and curve is x2a2+y2b2=1⇒b2x2+a2y2=a2b2
Now, differentiating Eq. (ii) w.r.t. x we get
b2.2x+a2.2y.dydx=0⇒dydx=−2b2x2a2y=−xb2ya2
From Eq. (i) . ysinα=p−xcosα⇒y=−xcotα+psinα
Thus, slope of the line is (−cotα).
So, the given equation of line will be tangent to the Eq. (ii), if (−xy.b2a2)=(−cotα)⇒xa2cosα=yb2sinα=k⇒x=ka2cosαand y=b2ksinα
So the line x cos α + y sin α = p will touch the curve x2a2+y2b2 at the point (ka2cosα,kb2sinα)
From Eq. (i) . ka2cos2α+kb2sin2α=p⇒a2cos2α+b2sin2α=ρk⇒(a2cos2α+b2sin2α)2=ρ2k2
From Eq. (ii), b2k2a4cos2α+a2k2b4sin2α=a2b2⇒k2(a2cos2α+b2sin2α)=1⇒(a2cos2α+b2sin2α)=1k2
On dividing Eq. (iv) by Eq. (v) . we get
a2cos2α+b2sin2α=p2