wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the straight line x cos α + y sin α = p touches the curve x2a2+y2b2=1, then prove that a2cos2α+b2sin2α=p2.

Open in App
Solution

Given, line is xcosα+ysinα=p
and curve is x2a2+y2b2=1b2x2+a2y2=a2b2
Now, differentiating Eq. (ii) w.r.t. x we get
b2.2x+a2.2y.dydx=0dydx=2b2x2a2y=xb2ya2
From Eq. (i) . ysinα=pxcosαy=xcotα+psinα
Thus, slope of the line is (cotα).
So, the given equation of line will be tangent to the Eq. (ii), if (xy.b2a2)=(cotα)xa2cosα=yb2sinα=kx=ka2cosαand y=b2ksinα
So the line x cos α + y sin α = p will touch the curve x2a2+y2b2 at the point (ka2cosα,kb2sinα)
From Eq. (i) . ka2cos2α+kb2sin2α=pa2cos2α+b2sin2α=ρk(a2cos2α+b2sin2α)2=ρ2k2
From Eq. (ii), b2k2a4cos2α+a2k2b4sin2α=a2b2k2(a2cos2α+b2sin2α)=1(a2cos2α+b2sin2α)=1k2
On dividing Eq. (iv) by Eq. (v) . we get
a2cos2α+b2sin2α=p2


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon