wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the straight line xcosα + ysinα = p touches the curve x2a2-y2b2=1, then prove that a2cos2α - b2sin2α = p2.

Open in App
Solution

We have,xcosα+ysinα=p .....ix2a2-y2b2=1 .....iiAs, the straight line i touches the curve ii.So, the straight line i is tangent to the curve ii.Also, the slope of the straight line, m=-cosαsinαAnd, the slope of the tangent to the curve=dydx=b2a2×xySo, b2a2×xy=-cosαsinαxb2sinα=-ya2cosαx=-ya2cosαb2sinα .....iiiSubstituting the value of x in i, we getxcosα+ysinα=p-ya2cos2αb2sinα+ysinα=p-ya2cos2α+yb2sinαb2sinα=py-a2cos2α+b2sinα=pb2sinαy=pb2sinαb2sinα-a2cos2αSo, from iii, we getx=-ya2cosαb2sinα=-ya2cosαb2sinα=-a2cosαb2sinα×pb2sinαb2sinα-a2cos2αx=-pa2cosαb2sinα-a2cos2αSubstituting the values x and y in ii, we getx2a2-y2b2=11a2×-pa2cosαb2sinα-a2cos2α2-1b2×pb2sinαb2sinα-a2cos2α2=1p2a2cos2αb2sinα-a2cos2α2-p2b2sin2αb2sinα-a2cos2α2=1p2a2cos2α-p2b2sin2αb2sinα-a2cos2α2=1p2a2cos2α-b2sin2αb2sinα-a2cos2α2=1p2a2cos2α-b2sin2αa2cos2α-b2sin2α2=1p2a2cos2α-b2sin2α=1 p2=a2cos2α-b2sin2α

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon