wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the straight lines ax+by+p=0 and xcosa+ysina=p are inclined at an angle π4 and concurrent with the straight line xsinaycosa=0 , then the value of a2+b2 is

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2
tanπ4=∣ ∣ ∣ ∣ab(cosαsinα)1+(ab)(cosαsinα)∣ ∣ ∣ ∣

|bsinα+acosα|=|bcosαasinα|

b2sin2α+a2cos2α+2absinαcosα=b2cos2α+a2sin2α2absinαcosα .....(1)

Solving xcosα+ysinα=c and xsinαycosα=0, we get

xsinα=ycosα

or x=ycosαsinα

substituting x=ycosαsinα in xcosα+ysinα=c we get
xcosα+ysinα=c

ycosαsinαcosα+ysinα=c

ycos2α+ysin2α=csinα

y(cos2α+sin2α)=csinα

y=csinα

substitute y=csinα in xsinαycosα=0 we get
xsinα=ycosαxsinα=csinαcosα

x=ccosα

The three lines are concurrent.

accosα+bcsinα+c=0

acosα+bsinα=1

a2cos2α+b2sin2α+2absinαcosα=1 ......(2)

Fro\alpha (1) and (2)

b2cos2α+a2sin2α2absinαcosα=1 ......(3)

Adding (2) and (3),

a2cos2α+b2sin2α+2absinαcosα+b2cos2α+a2sin2α2absinαcosα=1+1

a2cos2α+a2sin2α+b2sin2α+b2cos2α=2

a2+b2=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon