The correct option is
C 2tanπ4=∣∣
∣
∣
∣∣−ab−(−cosαsinα)1+(−ab)(−cosαsinα)∣∣
∣
∣
∣∣
⇒|bsinα+acosα|=|bcosα−asinα|
⇒b2sin2α+a2cos2α+2absinαcosα=b2cos2α+a2sin2α−2absinαcosα .....(1)
Solving xcosα+ysinα=c and xsinα−ycosα=0, we get
xsinα=ycosα
or x=ycosαsinα
substituting x=ycosαsinα in xcosα+ysinα=c we get
xcosα+ysinα=c
⇒ycosαsinαcosα+ysinα=c
⇒ycos2α+ysin2α=csinα
⇒y(cos2α+sin2α)=csinα
⇒y=csinα
substitute y=csinα in xsinα−ycosα=0 we get
xsinα=ycosα⇒xsinα=csinαcosα
∴x=ccosα
The three lines are concurrent.
∴accosα+bcsinα+c=0
⇒acosα+bsinα=−1
⇒a2cos2α+b2sin2α+2absinαcosα=1 ......(2)
Fro\alpha (1) and (2)
b2cos2α+a2sin2α−2absinαcosα=1 ......(3)
Adding (2) and (3),
a2cos2α+b2sin2α+2absinαcosα+b2cos2α+a2sin2α−2absinαcosα=1+1
a2cos2α+a2sin2α+b2sin2α+b2cos2α=2
∴a2+b2=2