If the straight lines x−12=y+1K=z2 and x+15=y+12=zK are coplanar, then the plane(s) containing these two lines is/are
y + z = - 1
y - z = - 1
If straight lines are coplanar then
⇒∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣=0
Since,x−12=y+1K=z2
and x+15=y+12=zK are coplanar.
⇒∣∣
∣∣2002K252K∣∣
∣∣=0⇒K2=4⇒K=±2∴n1=b1×d1=6j−6k, for K=2∴n2=b2×d2=14j+14k, for K=−2
So, equation of planes are (r−a).n1=0
⇒y−z=−1 and (r−a).n2=0⇒y+z=−1