Given :
L1:x=1+s,y=−3−λs,z=1+λs⇒L1:x−11=y+3−λ=z−1λ
and L2:x=t2,y=1+t,z=2−t
⇒L2:x1/2=y−11=z−2−1
D.r′s of L1=(a1,b1,c1)=(1,−λ,λ)
D.r′s of L2=(a2,b2,c2)=(12,1,−1)
For lines to be coplanar :
∣∣
∣∣x1−x2y1−y2z1−z2a1b1c1a2b2c2∣∣
∣∣=0⇒∣∣
∣
∣
∣∣−1411−λλ121−1∣∣
∣
∣
∣∣=0⇒0−4(−1−λ2)+1+λ2=0⇒λ=−2