If the sum and the product of the mean and variance of a Binomial Distribution are 1.8 and 0.8 respectively, find the probability distribution and the probability of at least one success.
Open in App
Solution
According to Question, we have np+npq=1.8 ⇒np(1+q)=1.8 ........ (i) and np.npq=0.8 ⇒n2p2q=0.8 ...... (ii)
Dividing the square of (i) by (ii) we get n2p2(1+q)2n2p2q=1.8×1.80.8 ⇒(1+q)2q=3.240.8 ⇒(1+q)2q=32480 ⇒(1+q)2q=8120 ⇒20q2−41q+20=0 ⇒20q2−25q−16q+20=0 ⇒5q(4q−5)−4(4q−5)=0 (4q−5)(5q−4)=0 q=54 or q=45 but q≠54 ∴q=45 ⇒p=15
From (i), n×15(1+45)=1.8 n×15×95=1.8 ⇒9n=25×1.8 ⇒n=25×1.89 ⇒n=459 ∴n=5
Hence, the binomial distribution is (p+q)n=(15+45)5 Probability of getting atleast 1 success =P(r≥1) =P(1)+P(2)+P(3)+P(4)+P(5)