If the sum of 33 + 73 + 113 + 153 .........20 terms is s20. Find the value of s20100.
Let s = 33 + 73 + 113 + 153+......... (1)
Above given series is sum of the cube of odd numbers starting from 3.
nth term of above given series
tn = 3+(n−1)×43 = 3+4n−43 = (4n−1)3
sum of the n terms
Sn=∑ni=1tn
= ∑ni=1 (4n−1)3
= ∑ni=1 [16n3−1−4n(4n−1)]
= ∑ni=1 [16n3−1−16n2+4n]
= 16 ∑ni=1n3 - ∑ni=11 - 16∑ni=1n2 + 4∑ni=1n
= 16[n(n+1)2]2 - n - 16[n(n+1)(2n+1)2] + 4 [n(n+1)2] ---------(2)
substitute n = 20 in equation (2)
= 16[(20×21)2]2 - 20 - 16[(20×21×41)2] + 4 [(20×21)2]
= 705600 - 2045920 + 840
S20 = 660500
S20100 = 6605