Given A.P. 25,22,19,... and sum =116
Here a=25,d=22−25=−3 ad Sn=116
As we know,
Sn=n2[2a+(n−1)d]
n2[2×25+(n−1)(−3)]=116
⇒n(50−(n−1)(3)]=232
⇒n[50−3n+3]=232
⇒n[53−3n]=232
⇒53n−3n2=232
⇒3n2−53n+232=0
⇒3n2−24n−29n+232=0
⇒3n(n−8)−29(n−8)=0
⇒(n−8)(3n−39)=0
⇒n=8,293
∵n∈N
∴n=8
Thus, 8th term is the last term of the A.P.
Finding last term
an=a+(n−1)d
Substitute n=8
a8=25+(8−1)(−3)
⇒a8=25−7×3
∴a8=25−21=4
Final answer: Hence, the last term of given A.P is 4