wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sum of all possible value(s) of x satisfying sin3x(sin3xcosx)=sinx(sinxcos3x), where x[0,2π] is aπb, where a and b are coprime, then the value of (a+b) is

Open in App
Solution

Given :
sin3x(sin3xcosx)=sinx(sinxcos3x)sin23xsin2x=sin3xcosxsinxcos3x(sin3xsinx)(sin3x+sinx)=sin2xsin2xsin4x=sin2xsin2x(sin4x1)=0sin2x=0 or sin4x=1

When sin2x=0, we get
2x=0,π,2π,3π,4πx=0,π2,π,3π2,2π

When sin4x=1, we get
4x=π2,5π2,9π2,13π2x=π8,5π8,9π8,13π8

Therefore, the sum of all possible values of x is
5π+7π2=17π2=aπba+b=19

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon