Given,
sinx+2cosx=1+√3cosx
⇒(sinx+2cosx)2=(1+√3cosx)2
⇒sin2x+4cos2x+4sinxcosx=1+3cos2x+2√3cosx
⇒1−cos2x+4cos2x+4sinxcosx=1+3cos2x+2√3cosx
⇒3cos2x+4sinxcosx=3cos2x+2√3cosx)
⇒cosx(2−√3sinx)=0
⇒cosx=0 or (2−√3sinx)=0
⇒cosx=0 or sinx=√32
⇒x=π2,3π2 or π3,2π3
Sum of solutions is
π2+3π2+π3+2π3=4π2+3π3=3π
Given,
kπ6=3π
⇒k=18
⇒k2=9