Let S=1+32+54+78+⋯n terms
S=1+32+54+78+⋯
S=2×1−121−1+2×2−122−1+2×3−123−1+⋯
So we can see that an=2n−12n−1
an=4n−22n
Now we divide this question into two parts
bn=n2n
S1=121+222+323+⋯n2n
S12=122+223+324+⋯n2n+1