Let a and d be the first term and the common difference of an AP respectively.
Sum of n terms of an AP,
Sn=n2[2a+(n−1)d]
Given, S6=36
⇒ 62[2a+(6−1)d]=36
⇒2a+5d=12...(i)
Also, S16=256
⇒ 162[2a+(16−1)]=256
⇒2a+15d=32...(ii)
On subtracting eq.(i) from eq.(ii), we get;
10d=20
⇒d=2...(iii)
From eq.(ii),
2a+5(2)=12
⇒2a=12–10=2
⇒a=1
∴ S10=102[2a+(10−1)d]
=5[2(1)+9(2)]=5(2+18)
=5× 20=100