Sum of p terms of an A.P. is given by =p2[2a+(p−1)d]
Given that sum of first m terms of an A.P. is n, i.e.,
Sm=n
∴m2[2a+(m−1)d]=n
⇒2am+m2d−md=2n.....(1)
Also given that sum of first n terms of an A.P. is m, i.e.,
Sn=m
∴n2[2a+(n−1)d]=m
⇒2an+n2d−nd=2m.....(2)
Subtracting eqn(2) from (1), we have
(2am+m2d−md)−(2an+n2d−nd)=2n−2m
⇒2am+m2d−md−2an−n2d+nd=2(n−m)
⇒2a(m−n)+(m2−n2)d−(m−n)d=2(n−m)
⇒(m−n)(2a+(m+n)d−d)=−2(m−n)
⇒2a+((m+n)−1)d=−2
Now for sum of first (m+n) terms-
S(m+n)=m+n2[2a+((m+n)−1)d]
⇒S(m+n)=(m+n)2×(−2)=−(m+n)
Hence the sum of first (m+n) terms is −(m+n).