Let the first term be a and common difference of the given
AP is d.
Given: Sm=Sn
⇒m2[2a+(m−1)d]=n2[2a+(n−1)d]
⇒2am+md(m−1)=2an+nd(n−1)
⇒2am−2an+m2d−md−n2d+nd=0
⇒2a(m−n)+d[(m2−n2)−(m−n)]=0
⇒2a(m−n)+d[(m−n)(m+n)−(m−n)]=0
⇒(m−n)[2a+{(m+n)−1}d]=0
⇒2a+(m+n−1)d=0 [∵m−n≠0]...(i)
Now,
Sm+n=m+n2[2a+(m+n)−1d]=0
⇒Sm+n=m+n2×0 [using (i)]
⇒Sm+n=0
Hence proved