If the sum of first n terms of an A.P. be equal to the sum of its first m terms, (m≠n), then the sum of its first (m+n) terms will be
As given n2{2a+(n−1)d}=m2{a+(m−1)d}
⇒2a(m−n)+d(m2−m−n2+n)=0
⇒(m−n){2a+d(m+n−1)}=0
⇒2a+(m+n−1)d=0,(∴m≠n)
∴Sm+n=m+n2{2a+(m+n−1)d}=m+n2{0}=0.