Sn=n2√3
Sn−1=(n−1)2√3
tn=Sn−Sn−1 =2n−1√3
Now,
n∑n=1t2n=(1√3)2[12+32+...+(2n−1)2]
=13[{12+22+...+(2n)2}−{22+42+...+(2n)2}]
=13[(2n)(2n+1)(4n+1)6−22(12+22+...+n2)]
=13[(2n)(2n+1)(4n+1)6−(4n)(n+1)(2n+1)6]
=13×2n+13[n(4n+1)−2n(n+1)]
=n(4n2−1)9
For n=18
18∑n=1t2n=18(4×182−1)9=2590