The correct option is A 2,4,6,8
Let the terms be a−3d,a−d,a+d and a+3d.
Then,
(a−3d)+(a−d)+(a+d)+(a+3d)=20
⇒4a=20
⇒a=5.
Also, given that (a−3d)2+(a−d)2+(a+d)2+(a+3d)2=120.
i.e., a2−6ad+9d2+a2−2ad+d2+a2+2ad+d2+a2+6ad+9d2=120
⇒4a2+20d2=120
⇒a2+5d2=30
⇒52+5d2=30
⇒5d2=5
⇒d=±1
Taking d=1, we get a−3d,a−d,a+d,a+3d=5−3,5−1,5+1,5+3=2,4,6,8.