If the sum of frist n terms of an A.P. be equal to the sum of its
first m terms, (m ≠ n), then the sum of its first (m+n) terms
will be
0
As given n2{2a + (n-1)d} = m2{a + (m-1)d}
⇒2a(m-n) + d( m2 - m - n2 + n) = 0
⇒(m - n){2a + d(m + n - 1)} = 0
⇒2a + (m + n - 1)d = 0, ( ∵ m ≠ n)
∴ Sm+n = m+n2{2a + (m + n - 1)d} = m+n2{0} = 0