CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sum of length of the hypotenuse and a side of a right angled triangle is given, then show that if the area of triangle is maximum, then the angle between them is π3.

Open in App
Solution

Let ABC be a triangle with AC = h AB = x and BC = y.
Also, CAB=θ
Let h +x = k

cosθ=xhx=hcosθh+hcosθ=kh(1+cosθ)=kh=k(1+cosθ)Also,Area of ABC=12(AB.BC)A=12.x.y=12hcosθhsinθ=12h2sinθcos.cosθ=2h24sinθ.cosθ=14h2sin2θSince h=k1+cosθA=14(k1+cosθ).sin2θA=k24.sin2θ(1+cosθ)2dAdθ=k24[(1+cosθ)2.cos2θ2isn2θ2(1+cosθ).(0sinθ)(1+cosθ)4]=k24{2(1+cosθ)[(1+cosθ).cos2θ+sin2θ(sinθ)](1+coscosθ)4}=k24.2(1+cosθ)3[(1+cosθ).cos2θ+2sin2θ.cosθ]=k22(1+cosθ)2[(1+cosθ)(12sin2θ)+sin2θ.cosθ]=k22(1+cosθ)3[1+csoθ2sin2θ2sin2θ]=k22(1+cosθ)3[(1+cosθ)2sin2θ]=k22(1+cosθ)3[1+cosθ2+2cos2θ]=k22(1+cosθ)3(cos2θ+cosθ1)for dAdθ=0,k22(1+cosθ)2(2cos2θ+cosθ1)=02cos2θ+cosθ1=02cos2θ+2cosθcosθ1=02cosθ(cosθ+1)1(cosθ+1)=1(2cosθ1)(cosθ+1)=0cosθ=12orcosθ=1θ=π3or θ=2nπ±πθ=π3
Again, differentiating w.r.t. θ in eq. (v) . we get
ddθ(dAdθ)=ddθ[k22(1+cosθ)(2cos2θ+cosθ1)]d2Adθ2=ddθ[k2(cosθ1)(1+cosθ)2(1+cosθ)2]=ddθ[k22.(2cosθ1)(1+cosθ)2]=k22[(1+cosθ)2.(2sinθ)2(1+cosθ).(sinθ)(2cosθ1)(1+cosθ)4]=k22[(1+cosθ).[1+cosθ](2sinθ)+2sinθ(2cosθ1)(1+cosθ)4]k22[2sinθ2sinθ.cosθ+4sinθ.cosθ2sinθ(1+cosθ)3]k22[4sinθsin2θ+2sin2θ(1+cosθ)3]=k22[sin2θ4sinθ(1+cosθ)3](d2Adθ2)atθ=π3=k22[sin2π34sinπ3(1+cosπ3)]=k22[32432(1+12)]=k22[33.82.27]=k2(239)
Which is less than zero.
Hence, area of the right angled triangle is maximum when the angle between them is π3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon