If the sum of m terms of an AP is the same as the sum of its n terms. The sum of its (m + n) terms is
Sm=Sn
Sm=m2(2a+(m−1)d)
Sn=n2[2a+(n−1)d]
Sm−Sn=m2(2a+(m−1)d)−n2[2a+(n−1)d]=0
Sm−Sn=(m−n)(2a+(m+n−1)d)=0
Therefore (2a+(m+n−1)d)=0
Sm−Sn=2a(m−n)+m(m−1)d−n(n−1)d=0
Sm+n=m+n2(2a+((m+n)−1)d)
2a[m−n]+d[m(m−1)−n(n−1)]=0
2a[m−n]+d[m2−m−n2+n]=0
(m−n)[2a+(m+n−1)d]=0
Sm+n=0
Option is A