If the sum of n terms of an A.P. is cn(n-1), where cā 0, then sum of the squares of these terms is
If tr be the rth term of the A.P., then
tr=SrāSrā1cr(rā1)āc(cā1)(rā2)
=c(rā1)(rār+2)=2c(rā1)
we have,
t21+r22+......+t2n=4c2(02+12+22+.....+(nā1)2)
=4c2(nā1)n(2nā1)6
=23c2n(nā1)(2nā1)