If the sum of n terms of an A.P is cn(n - 1), where c>0, the sum of the square of these terms is -
23c2n(n−1)(2n−1)
Solution : Sn=cn(n−a);c>0
n=1
T1=0
S2=2c
T2=2c
S3=6c
T3=4c
T4=6c
s=02+(2c)2+(4c)2+(6c)2+......+
Sn−1=4(c2+4c2+9c2......tn−1)
Sn−1=4(c2+4c2+......tn−2+tn−1)
tn−1=4(c2+3c2+5c2+........)
tn−1=4(n−1)2[2c2+(n−2)2c2]=2(n−1)(2nc2−2c2)=4c2(n−1)2
tr=4c2rr
Sum of squares
n−1∑r=14c2r2=4c2.(n−1)n()2n−1)6
=23c2n(n−1)(2n−1)