If the sum of n terms of the following series:
2n+12n−1+3(2n+12n−1)2+5(2n+12n−1)3+…is 36, then value of n is
4
Putting x=2n+12n−11−x=−22n−1or x1−x=−(2n+12)LetS=x+3x2+5x3+…+(2n−1)xnxS=x2+3x3+…+(2n−3)xn+(2n−1)xn+1–––––––––––––––––––––––––––––––––––––––––––––––––––––S(1−x)=x+[2x2+2x3+…+(n−1) terms]−(2n−1)xn+1=−(2n+12)(−2n)⇒n(2n+1)=36∴ n=4