Given : {x+1}+2x=4[x+1]−6
⇒{x}+2([x]+{x})=4[x]+4−6⇒3{x}=2[x]−2⇒{x}=2[x]−23 ⋯(1)
We know,
0≤{x}<1⇒0≤2[x]−23<1⇒0≤2[x]−2<3⇒1≤[x]≤52∴[x]=1,2
From equation (1),
If [x]=1⇒{x}=0
If [x]=2⇒{x}=23
∵x=[x]+{x}∴x=1+0=1 and x=2+23=83
So, the sum of roots is
p=1+83=113∴3p=3×113=11