(1+x)m(1−x)n
Expanding using Binomial Theorem we get,
(1+mx+mC2x2+...+mCmxm)(1−nx+nC2x2...+(−1)nnCnxn)
Therefore coefficient of x is m−n ...(i)
coefficient of x2 is nC2−mn+mC2 ..(ii)
Adding (I) and (ii), we get
m−n+(n(n−1)2+m(m−1)2−mn)=−m
⇒(m−n)+12(n2−2mn+m2−(m+n))=−m
⇒(m−n)+(m−n)22=n−m2
⇒3(m−n)+(m−n)2=0
⇒(m−n)(m−n+3)=0
Since, m and n are distinct , n−m=3
Hence, 3(n−m)=9.