If the sum of the first 11 terms of the series (147)2+(157)2+(167)2+22+(217)+......... 117λ then ,λ is equal to
(147)2+(157)2+(167)2+22+(217)2+(227)2+(237)2+....32=(117)2+(127)2+(137)2+(147)2+.....(217)2Sn=n(n+1)(2n+1)6(12+22+32+....n2)Totalsum=149(S21−S10)=149(21(21+1)(42+1)6−10(10+1)(20+1)6)=149(21×22×436−10×11×216)=149(7×11×43−5×11×7)=149{77(43−5)}=149(77×38)=117(38)⇒λ=38