If the sum of the first 15 terms of the series 3+7+14+24+37+....... is 15k, then k is equal to:
Sn=3+7+14+24+37+...+Tn
Sn=3+7+14+24+...+Tn
∴0=3+4+7+10+13+...−Tn
or Tn=3+4+7+10+13+...rterm
∴Tn=3+(n−12)[8+(n−2)3]
=3+(n−1)(3n+2)2
=3+3n2(3n+2)2
or Tn=32n2−n2+2
∵Sn=∑Tn
∴Sn=32n(n+1)(2n+1)6−n(n+1)4+2n
∴Sn=32[15×16×316]−(15×164)+(2×15)=1860−60+30
S15=1830=15k
k=122