Let the first term of AP =a
common differnce =d.
Sum of first n terms =n2(2a+(n−1)d)=m given.
∴2an+n(n−1)d=2m.−(1)
Similary Sum of first m term =m2[2a+(m−1)d]=n
2am+m(m-1)d =2n. -(2)
Subtract (2) from (1)
2a(n-m) +n(n-1)d-m(m-1)d=2(m-n)
2a(n−n)+d{n2−n−m2+n}=2(m−n)
2a(n-m)+d{(n+m)(n-m)-(n-m}=2(m-n)
Take out n -m common,
2a+d{n+m-1}=-2 -(3)
Sum of (m+n) terms =m+n2[2a+(m+n−1)d]
=m+12[−2] (from 3)
Sm+n=−(m+n)-proved.