The correct option is C n(4n2−1)c23
Given
n2(2a+(n−1)d)=cn2
⇒a+an=2cn
⇒an=2cn−a____(1)
⇒a2n=4c2n2+a2−4cna
∴∑a2n=4c2∑n2+∑a2−4ca∑n
=4c2n(n+1)(2n+1)6+na2−4ca(n(n+1)2)
=2c3{n(n+1)((2n+1)c−3a)}+na2____(2)
Now, from (1) , an=2cn−a
⇒∑an=2c∑n−∑a
⇒cn2=2cn(n+1)2−an=cn2+cn−an
⇒cn−an=0 or c=a
Substituting in (2),
∑a2n=2c3{n(n+1)((2n+1)c−3c)}+nc2
=2c2n(n+1)(2n−2)+3nc23
=nc2(4n2−4+3)3
=nc2(4n2−1)3