wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sum of the first ten term of the series (135)2+(225)2+(315)2+42+(445)2+...., is 16m5, then m is equal to

A
607
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
200
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
99
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
102
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 607
(135)2+(225)2+(315)2+(4)2+....+ to 10 terms is 16m5
(85)2+(125)2+(165)2+(205)2+....+ to 10 terms is 16m5
82+122+162+...52 to 10 terms is 16m5
42(22+32+42+.....)52 to 10 terms is 16m5
4252(12+22+32+42+....12) to 10 terms is 16m5
162510r=1r21625×1
=162510(10+1)(2×10+1)61625 where nr=1r2=n(n+1)(2n+1)6
=16×3036251625=16m5(given)
1625(30361)=16m5
1625×3035=16m5
m=607 on simplification
m=607

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon