If the sum of the lengths of the hypotenuse and another side of a right-angled triangle is given, then the area of the triangle is a maximum when the angle between these sides is θ. The value of 12θπ is-
Open in App
Solution
Let S be sum & x be one side Let "b" be the base of the triangle tanθ=bxxtanθ=bb=√(s−x)2−x2sinθ=b(s−x)Area=12×√(s−x)2−x2dAdx=12[√(s−x)2−x2+x(2(s−x)−2x)2√(s−x)2−x2]=0(s−x)2−x2+x(s−x)−x2=0=s2−sx−2x2=02x2+sx−s2=0x=−s±√s2+8s22=s2cosθ=s2.s=12θ=60∘=π312θπ=12×π3π=4