If the sum of the two roots of the equation 4x3+16x2−9x−36=0 is zero, then the roots are
-4, 32, −32
Let roots of 4x3+16x2−9x−36=0 be α,−α,β.
Sum of roots = α−α+β=β=−164=−4
Hence x=−4 is a root of the equation. Using long division method, reduced equation is
4x2(x+4)−9(x+4)=0
⇒ (x+4)(4x2−9)=0
⇒ x=−4,x=±32