The correct option is D sum of all the real roots of the equation is 0
x4−2x3+4x2+6x−21=0
Let α,β,γ and δ be the roots.
Then S1=α+β+γ+δ=2
S2=αβ+αγ+αδ+βγ+βδ+γδ=4
S3=αβγ+αβδ+βγδ+αγδ=−6
S4=αβγδ=−21
Let α+β=0 ⋯(1)
⇒γ+δ=2 ⋯(2)
αβ+αγ+αδ+βγ+βδ+γδ=4
⇒αβ+αγ+αδ−αγ−αδ+γδ=4 [∵β=−α]
⇒αβ+γδ=4 ⋯(3)
αβγ+αβδ+βγδ+αγδ=−6
⇒αβγ+αβδ−αγδ+αγδ=−6 [∵β=−α]
⇒αβ(γ+δ)=−6
⇒αβ=−3 ⋯(4)
αβγδ=−21
From (4),γδ=7 ⋯(5)
Solving (1) and (4), we get
α=√3, β=−√3 or α=−√3, β=√3
Solving (2) and (5), we get
γ=1+i√6, δ=1−i√6 or γ=1−i√6, δ=1+i√6
∴ Roots are √3,−√3,1+i√6,1−i√6