Let the two vectors be →a and →b
Then, |→a|=1 and |→b|=1 ⋯(1)
Also, |→a+→b|=1
We need to prove |→a−→b|=√3
|→a+→b|=1
⇒|→a+→b|2=1
⇒|→a|2+|→b|2+2→a⋅→b=1
⇒12+12+2→a⋅→b=1 [From (1)]
⇒→a⋅→b=−12 ⋯(2)
Now, |→a−→b|2=|→a|2+|→b|2−2→a⋅→b
=1+1−(−1) [From(1) & (2)]
=3
⇒|→a−→b|=√3