If the system of equations x+αy+α2z=1, αx+y+αz=−1, α2x+αy+z=1 has infinitely many solutions then 1+α+α2=
1
For infinitely many solutions, ∣∣ ∣ ∣∣1αα2α1αα2α1∣∣ ∣ ∣∣=0
⇒1(1−α2)−α(α−α3)+α2(α2−α2)=0
∴1−α2−α2+α4⇒(α2−1)2=0⇒α2=1⇒α=±1
If α=1, then no solution
If α=−1, then all equations reduce to x−y+z=1⇒ infinitely many solutions.
⇒1+α+α2=1−1+1=1