The correct option is D (9/4,3/8)
2y.dydx=(2−x)2−2x(2−x)
At (1,1) we get
2.dydx=1−2
Or
dydx=−12
Now Equation of the tangent is
(y−1)=−12(x−1)
Or
2y−2=−x+1
Or
x+2y=3
Or
x=3−2y.
Substituting in the equation we get
y2=(3−2y)(2−3+2y)2
Or
y2=(3−2y)(2y−1)2
Or
y2=(3−2y)(4y2−4y+1)
Or
y2=12y2−12y+3−8y3+8y2−2y
y2=−8y3+20y2−14y+3
Or
8y3−19y2+14y−3=0
Solving the above cubic, we get
y=38,38 and y=1
Considering y=38 we get
x=3−2y
=3−34
=94
Hence the point is
(94,38)