Consider the given expression.
y2=x(2−x)2.........................(1)
Differentiating this equation with respect to x, and we get,
ddxy2=ddx(x(2−x)2)
ddxy2=ddx(x(4+x2−4x))
ddxy2=ddx(4x+x3−4x2)
2ydydx=4dxdx+dx3dx−4dx2dx
2ydydx=4+3x2−4×2x
2ydydx=4+3x2−8x
dydx=4+3x2−8x2y
Now put, (x,y)=(1,1)and we get,
Slope m= dydx=4+3(1)2−8(1)2(1)
m= dydx=−12
We know that equation of tangent is,
y−y1=dydx(x−x1)
If given point (1,1) lies on this tangent, so
y−1=−12(x−1)
2y−2=−x+1
x+2y−2−1=0
x+2y−3=0...................................(2)
2y=3−x
y=3−x2............................(3)
Put the value of y in equation (1),
y2=x(2−x)2
(3−x2)2=x(2−x)2
Taking square root on both sides, we get,
(3−x2)=√x(2−x)
3−x=(4−2x)√x
Let us take x=t2....................(4)
Then,
3−t2=(4−2t2)√t2
3−t2=(4−2t2)t
3−t2=4t−2t3
2t3−t2−4t+3=0
Solve this by remainder theorem,
Put t=1 and solve
2(1)3−(1)2−4(1)+3=0
2−1−4+3=0
1−1=0
0=0
Then divide equation (4) by(t−1)
2t3−t2−4t+3=0this solution is (t−1)(2t2+t−3)=0
Then solve(t−1)(2t2+t−3)=0 factorise (2t2+t−3)=0
t=1,1,−32
Put the value of t in equation (4),
x=(−32)2=94 for any point P
x=94 put value of x in equation (2) and we get,
94+2y−3=0
2y=3−94
2y=12−94
2y=34
y=38 for any point P
Hence, (x,y)=(94,38) for any point P
It is required solution.