wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the tangent at (1,1) on y2=x(2x)2 meets the curve again at P, then find coordinates of P

Open in App
Solution

Consider the given expression.

y2=x(2x)2.........................(1)


Differentiating this equation with respect to x, and we get,

ddxy2=ddx(x(2x)2)

ddxy2=ddx(x(4+x24x))

ddxy2=ddx(4x+x34x2)

2ydydx=4dxdx+dx3dx4dx2dx

2ydydx=4+3x24×2x

2ydydx=4+3x28x

dydx=4+3x28x2y


Now put, (x,y)=(1,1)and we get,

Slope m= dydx=4+3(1)28(1)2(1)

m= dydx=12

We know that equation of tangent is,

yy1=dydx(xx1)

If given point (1,1) lies on this tangent, so

y1=12(x1)

2y2=x+1

x+2y21=0

x+2y3=0...................................(2)

2y=3x

y=3x2............................(3)

Put the value of y in equation (1),

y2=x(2x)2

(3x2)2=x(2x)2

Taking square root on both sides, we get,

(3x2)=x(2x)

3x=(42x)x

Let us take x=t2....................(4)

Then,

3t2=(42t2)t2

3t2=(42t2)t

3t2=4t2t3

2t3t24t+3=0

Solve this by remainder theorem,

Put t=1 and solve

2(1)3(1)24(1)+3=0

214+3=0

11=0

0=0

Then divide equation (4) by(t1)

2t3t24t+3=0this solution is (t1)(2t2+t3)=0

Then solve(t1)(2t2+t3)=0 factorise (2t2+t3)=0

t=1,1,32

Put the value of t in equation (4),

x=(32)2=94 for any point P

x=94 put value of x in equation (2) and we get,

94+2y3=0

2y=394

2y=1294

2y=34

y=38 for any point P

Hence, (x,y)=(94,38) for any point P

It is required solution.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon