Equation of the curve is x2/3+y2/3=a2/3
the parametric equations of the curve are x=acos3θ,
y=asin3θ
⇒dydx=dydθdxdθ=a⋅3sin2θcosθa⋅3cos2θ(−sinθ)
=−tanθ
Equation of the tangent at (acos3θ,asin3θ) is y−asin3θ=−tanθ(x−acos2θ)
y−asin3θ=−xtanθ+asinθcosθcos3θ
y−asin3θ=−xsinθcosθ+asinθcos2θ
⇒ycosθ+xsinθ=asinθcos3θ+asin3θcosθ
⇒xsinθ+ycosθ=asinθcosθ(cos2θ+sin2θ)
⇒xcosθ+ysinθ=a ( Divided by both side sinθcosθ)
x-intercept =acosθ, y-intercept=asinθ
A(acosθ,0) and B(0,asinθ)
AB=√(acosθ)2+(asinθ)2
=√a2(cos2θ+sin2θ)
=√a2=a
∴AB=a, a constant.