wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the tangent at P on the curve xmyn=am+n meets the co-ordinates axes at A and B, then AP:PB=

A
m2:n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
m3:n3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
m:n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2m:n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C m:n
xmyn=am+n.
Take log both sides
mlogx+nlogy=(m+n)loga
Differentiating w.r.t x, we get
m1x+n1ydydx=0
dydx=mnyx
Hence the equation of the tangent is
Yy=mnyx(Xx)
myX+nxY=(m+n)xy...(1)
Let the tangent (1) meet the axes in points A and B.
Putting Y=0, we get A=[m+nmx,0]
Putting X=0 we get B=(0,m+nmy)
Point of contact P is (x,y).
Let P divide AB in the ratio λ:1
x=λ.0+1m+nnxλ+1(λ+1)x=(mn+1)x
λ+1=mn+1
λ=mn

366608_165438_ans.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Parabola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon