The correct option is C (94,38)
y2=x(2−x)2
⇒2y(dydx)=(2−x)2−2x(2−x)
⇒(dydx)(1,1)=−12
Hence, the equation of the tangent is
y−1=−12(x−1)
⇒2y−2=−x+1⇒x+2y=3
On solving, the given curve and the tangent, we get
y2=(3−2y)(2−3+2y)2
⇒y2=(3−2y)(2y−1)2
⇒8y3−19y2+14y−3=0
⇒(y−1)(8y2−11y+3)=0
(y−1)2(8y−3)=0
⇒y=1,38
when y=38,x=3−2y=3−34=94
Hence, the point is (94,38)