The correct option is D 5π3
Equation of the tangent to the ellipse from the given point is
x16⋅4cosa+11y256⋅16√11sina=1⇒4xcosa+√11ysina=16
It is tangent to the circle x2+y2−2x−15=0
So, the perpendicular distance from centre, i.e., (1,0) to the tangent is equal to the radius of the circle.
16−4cosa√16cos2a+11sin2a=4⇒(cosa−4)2=16cos2a+11sin2a⇒cos2a−8cosa+16=5cos2a+11⇒4cos2a+8cosa−5=0⇒cosa=12,−52⇒cosa=−52 is not possible⇒cosa=12⇒a=π3,5π3