Slope of tangent at (x1,y1) is −x21y21
The tangent cuts the curve again at (x2,y2). Therefore,
slope of the tangent =y2−y1x2−x1
⇒−x21y21=y2−y1x2−x1 (1)
Also, x31+y31=a3 and x32+y32=a3
∴x31+y31=x32+y32
⇒y32−y31x31−x32=1
⇒y2−y1x1−x2=x21+x22+x1x2y21+y22+y1y2
⇒x21y21=x21+x22+x1x2y21+y22+y1y2
⇒x21y21+x21y22+x21y1y2=y21x21+x22y21+y21x1x2
⇒x22y21−y22x21=x1y1[x1y2−x2y1]
⇒x2y1+y2x1=−x1y1
⇒x2x1+y2y1=−1