If the tangent drawn at point P(t2,2t) on the parabola y2=4x is same as the normal drawn at point Q(√5cosθ,2sinθ) on the ellipse 4x2+5y2=20, then
A
Q≡(−1,4√5)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Q≡(−1,−4√5)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
P≡(15,−2√5)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
P≡(15,2√5)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AQ≡(−1,4√5) BQ≡(−1,−4√5) CP≡(15,−2√5) DP≡(15,2√5)
The equation of the tangent at P(t2,2t) on the parabola y2=4x is : ⇒x−ty+t2=0…(1)
Equation of the normal at point Q(√5cosθ,2sinθ) on the ellipse 4x2+5y2=20 is : (√5secθ)x−(2cosecθ)y=5−4 ⇒(√5secθ)x−(2cosecθ)y=1…(2)
Given that equations (1) and (2) represent the same line. ⇒√5secθ1=−2cosecθ−t=−1t2 ⇒t=2√5cotθ and t=−12sinθ ⇒2√5cotθ=−12sinθ ⇒4cosθ=−√5sin2θ ⇒4cosθ=−√5(1−cos2θ) ⇒√5cos2θ−4cosθ−√5=0 ⇒(cosθ−√5)(√5cosθ+1)=0 ⇒cosθ=−1√5 or cosθ=√5 (not possible) ⇒cosθ=−1√5⇒sinθ=±2√5 ⇒t=∓1√5