If the tangent drawn at point (t2,2t) on the parabola y2=4x, is same as the normal drawn at point (√5cosθ,2sinθ) on the ellipse 4x2+5y2=20 ,then:
A
θ=cos−1(−1√5)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
θ=cos−1(1√5)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
t=−2√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
t=±1√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Bθ=cos−1(−1√5) Ct=±1√5 The equation of the tangent at (t2,2t) to the parabola y2=4x is 2ty=2(x+t2) ⇒ty=x+t2 ⇒x−ty+t2=0 (i) The equation of the normal at point (√5cosθ,2sinθ) on the ellipse 5x2+5y2=20 is ⇒(√5secθ)x−(2cosecθ)y=5−4 ⇒(√5secθ)x−(2cosecθ)y=1 (ii) Given that Eqs. (i) and (ii) represent the same line. ⇒√5secθ1=−2cosecθ−t=−1t2 ⇒t=2√5cotθ and t=−12sinθ ⇒2√5cotθ=−12sinθ ⇒4cosθ=−√5sin2θ ⇒√5cos2θ−4cosθ−√5=0 ⇒(cosθ−√5)(√5cosθ+1)=0 ⇒cosθ=−1√5[∵cosθ≠√5] ⇒θ=cos−1(−1√5) Putting cosθ=−1√5 in t=−12sinθ, we get t=−12√1−15=±1√5 Hence, θ=cos−1(−1√5) and t=±1√5.