If the tangent & normal at any point 'P' of the parabola y2=4ax intersect the axis of the parabola at T & G then ST=SG≠SP.
False
Let the point P be (at2,2at). The equation of tangent at point P
T=0
y.(2at)−2a(x+at2)=0
ty−x−at2=0 .......(1)
We need to find the equation of normal which passes through point P(at2,2at)
Slope of the normal =−1slope of tangent
=−11t=−t
Equation of Normal is y−2at=−t(x−at2)
y=−tx+2at+at3 ........(2)
For coordinates of point T:
since, T lies on the x-axis y=0
Substituting y=0 in equation of tangent
t×0−x−at2=0
x=−at2
T(−at2,0)
For coordinates of point G
G also lies on the x-axis,y=0
Substituting y=0 in the equation of normal
0=−tx+2at+at3
x=2at+at3t=2a+at2
G(2a+at2,0)
Coordinates of S focus=(a,0)
Now, we need to check for SP,ST and SG
So, SP=√(at2−a)2+(2at−a)2
=√a2t2+a2−2a2t2+4a2t2
=√a2t2+a2+2a2t2
=√(at2+a)2
SP=|at2+a|
ST=√(−at2−a)2+0
=√(at2+a)2
ST=|at2+a|
SG=√(2a+at2−a)2+0
=√(at2+a)2
=|at2+a|
So, we get,
SP=ST=SG=|at2+a|
So, the given statement is not correct.