Slope Formula for Angle of Intersection of Two Curves
If the tangen...
Question
If the tangent to the curve y=xx2−3,x∈R,(x≠±√3,) at a point (α,β)≠(0,0) is parallel to the line 2x+6y−11=0, then |6α+2β|=
Open in App
Solution
y=xx2−3...(1)
Differentiating w.r.t x, we get dydx=−x2−3(x2−3)2 dydx∣∣∣(α,β)=−α2−3(α2−3)2
The slope of line =dydx=−13 ⇒−α2−3(α2−3)2=−13 ⇒α=0,±3(α≠0)
Now, from equation (1) β=αα2−3=±12 (α,β)=(3,12),(−3,−12) ⇒|6α+2β|=19