Let P(h,k) be point of intersection of the tangents at P and Q,
Equation of the chord of contact is,
hxa2−kyb2=1⇒y=b2ha2kx−b2k ⋯(1)
This touches the parabola,
The equation of tangent of a parabola is,
y=mx+am ⋯(2)
Comparing equation (1) and (2),
m=b2ha2kam=−b2k⇒a=−b2k×b2ha2k⇒k2=−b4a3h
So, the locus is,
y2=−b4a3x
α+β+γ=9