The correct option is B x2−4y2−16x2y2=0
Any point on the hyperbola will be,
(tanθ,secθ2)
Equation of tangent, T=0
4ysecθ2=xtanθ+1⇒2ysecθ=xtanθ+1
Given that tangents drawn to the hyperbola intersect the co-ordinate axes at the distinct points A and B
Thus the coordinates of A
y=0,x=−cotθ
And the coordinates of B
x=0,y=cosθ2
Let the midpoint of AB=(h,k)
(h,k)=⎛⎜
⎜
⎜⎝−cotθ+02,0+cosθ22⎞⎟
⎟
⎟⎠⇒−12h=tanθ,14k=secθ⇒(14k)2−(−12h)2=1⇒4h2−16k2=64k2h2
Hence the locus of the midpoint will be,
x2−4y2−16x2y2=0